

A methodology for minimum capacity targets for EV Charging Infrastructure

In collaboration with

Approach

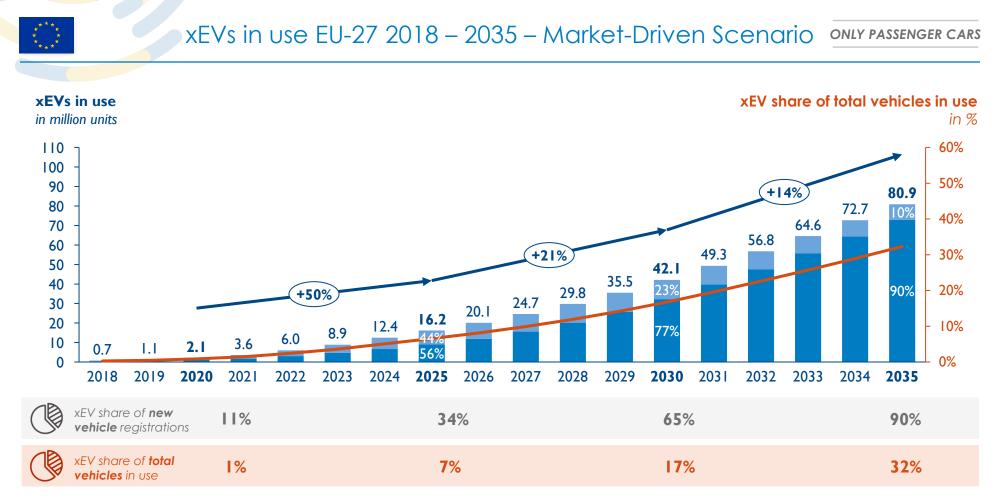
Calculating minimal threshold Main Assumptions

Alternative scenarios

Divergent approaches regarding public v private and AC v DC

We consider a market-driven scenario to project fleet size and electricity demand from EVs to 2025 and 2030

- Market driven EV uptake based on current policies and EV strategies of major European Automotive OEMs (VW Group, Stellantis, Renault, Daimler, BMW, Volvo, JLR)
- EV Forecast based on existing production forecasts of market intelligence companies (IHS, LMC, Bloomberg) and manufacturer's target announcements


EV uptake will drive infrastructure deployment, technology needs to be adapted to charging use cases

Approach to infrastructure planning

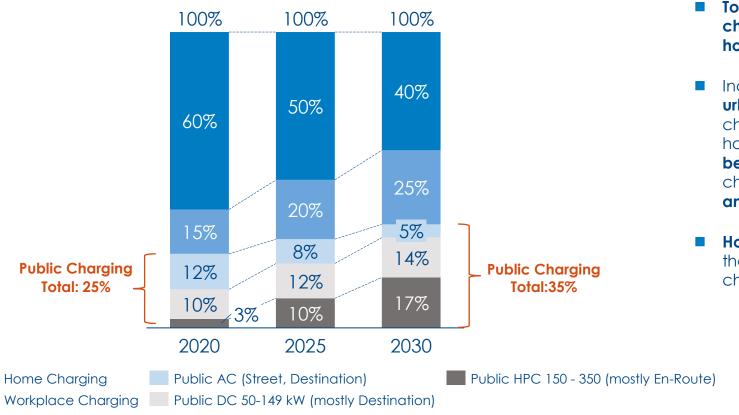
Main data inputs and validations

Logic	The EV fleet is the main driver for charging infrastructure → Infrastructure targets should always be set relative to EV targets	Home Charging	 Housing statistics (share of family homes and semi-houses) Today majority of EV drivers are homeowners → 2030 assumption: EV drivers evenly distributed among all housing use-case
Distinction technology & use case Metric	Different charging use cases require different charging technology → Infrastructure targets should distinguish between AC, DC (50 - 149kW) and HPC (≥150kW) to account for diff. use cases AC, DC and HPC Charging Points/ 100 BEVs	Workplace	 Commuting statistics (proportion of employees that drive to work by car) Assumption: Employees only drive to work by car if they have a parking possibility at their employer
Roadmap	Status-Quo "Overbuild" "New normal" 2020 2025 2030 Existing Release consumer sufficient infrastructure fears, enabling infrastructure for as starting breakthrough of convenient and	Charging	 Assumption: Investment-heavy HPC use-case will reach minimum threshold Validation with Charging Point Utilization (Benchmark data provided by member companies) Validation with mature EV market

In a market-driven scenario we expect that 65% of all new vehicles sold will be electrified and the xEV fleet will grow to 42 million vehicles by 2030

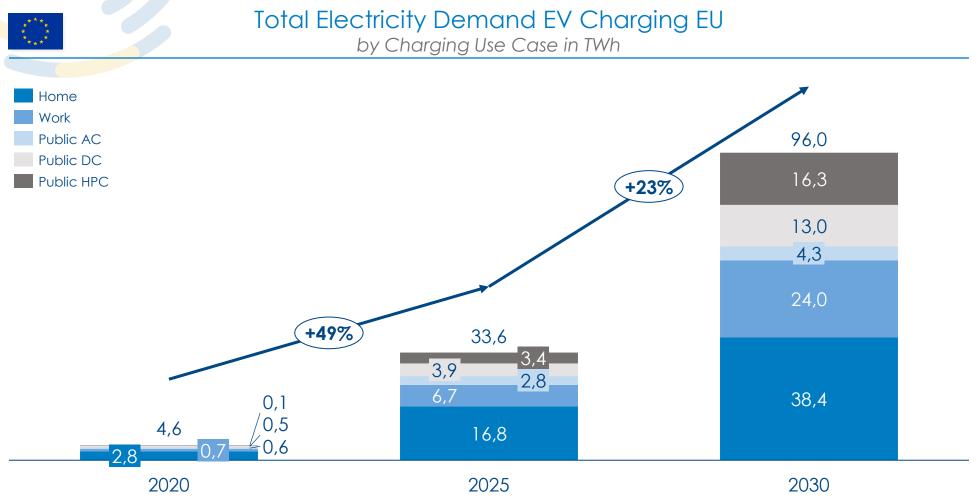
Source: Arthur D. Little Analysis based on vehicle sales forecast from IHS, EVVolumes.com, Bloomberg and manufacturer Sales Targets

xEV Share BEV PHEV


EV adoption of urban EV drivers will increase share of public charging use cases to 35% in 2030

Charging Behavior Forecast – Charging Use Cases Distribution per consumed electricity

- I Today most EV drivers charge their vehicle at home
- Increasing EV adoption of urban EV drivers without charging possibility at home will shift charging behavior from Home charging to Workplace and Public charging
- Home Charging will remain the most important charging use case


Source: Transport & Environment, Expert Interviews, ADL project Experience

The total electricity demand by EVs is calculated by multiplying vehicles, annual mileage and average electricity consumption

Main Assumptions market scenario

	2020	2025	2030
New Vehicle and xEV Forecast	Source Vehicle Forecast: IH Source xEV Forecast: LMC, announcements, expert int	EVVolumes.com, Bloomberg	, Manufacturer
	BEV: 15.000 km	BEV: 15.000 km	BEV: 15.000 km
Annual Electric Mileage	PHEV: 5.000 km	PHEV: 5.000 km	PHEV: 5.000 km
ege	Mileage of PVs historically k	between 14.000 and 15.000 ki	m in EU
	21,3 kWh/ 100 km	19,7kWh/ 100km	18kWh/100km
Electricity Consumption	average consumption exp	EU 2018-2019 with additional r ected to decreased due to s ns; PHEVs expected to have	hift towards smaller

Based on our assumptions public charging will generate a total electricity demand of 10.1 TWh by 2025 and 33.6 TWh by 2030

Source: Arthur D. Little Analysis

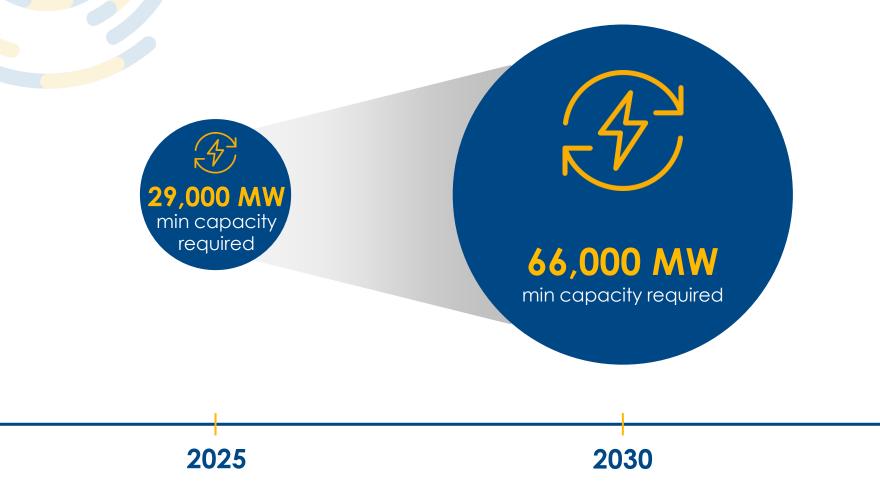
The electricity demand is divided over indicative numbers of charging points per 100 BEVs across different use cases

*	*	*
<u>_</u>		<u> </u>
		÷.
*		*

Density of Charging Network Charging points* per 100 BEVs

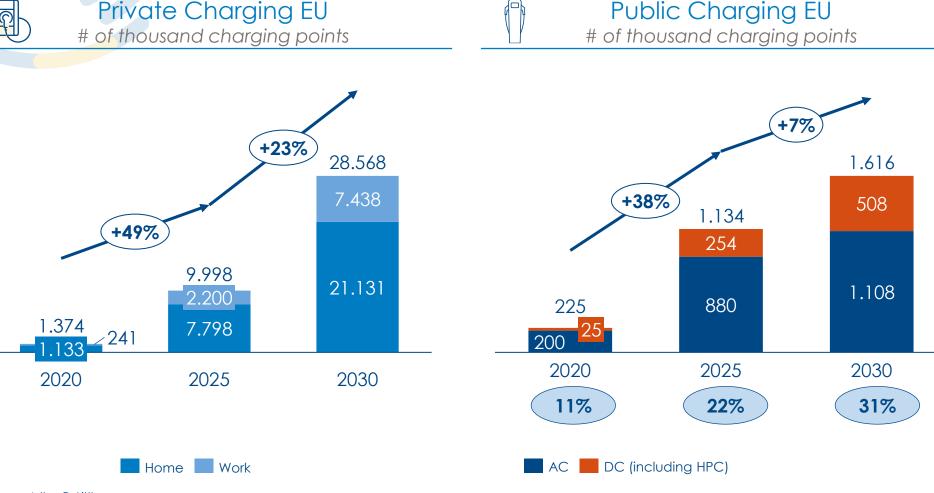
Assumptions	CPs/ 100 BEVs	2020	2025	2030
	Home	80	70***	60***
	Work	15,0	17,5***	20,0***
	Public AC	12,4**	7,0***	3,0***
	Public DC	1,7**	2,5	1,3
	Public HPC	0,52**	0,43	0,28
Validation (Utilization) The utilization period assumes a 24 hr day	CP Utilization	2020	2025	2030
	Public AC	7,4%	6,7%	7,2%
	Public DC	8,4%	5,1%	7,2%
	Public HPC	11,3%	13,1%	17,6%

Utilization rates will vary, depending on factors such as: network size of CPOs, economies of scale, changing charging behaviors; HPC markets becoming larger compared to AC


Source: Arthur D. Little

*) charge point = EVSE **)validated with actual data from EAFO

***)50% of ratio applied for PHEVs


Note: This is an indicative model for split of AC-DC-HPC which would also depend on key factors such as use-cases, market maturity and country specifics, amongst others

Overall minimum European capacity threshold required to serve AC, DC and HPC charging points in 2025 and 2030

Translating minimum capacity threshold into indicative AC-DC charging point split

P

x%

Source: Arthur D. Little

DC Share of total charging points

Minimum threshold targets need to be linked to level of EV uptake in different countries with balancing factors

Total Passenger Car Fleet EU Electric Fleet Forecast EU 2019: 242.7 m vehicles xEVs in use EU 27 2018 - 2035 - Scenario Base Belgium⁻ ONLY PASSENGER C Croatia Austria Czech Republic xEVs in use Sweder Denmark Estonia # of xEVs in Use 2025 **Breakdown of** Finland Slovakia EU EV uptake Romania France Portugal on national # of xEVs in Use 2030 X Poland level Netherlands Luxembourg xEV share of new wehicle resistratio on country level Lithunia Germany Latvia xEV share of total 32% Italy Greece Ireland Hungary xEV Share BEV PHE **Status-Quo EV Adoption** 2 (xEV fleet and new registration share of fleet) Apply Country **xEV** maturity index **Balancing Balancing** # of xEVs in Use 2025 balancing Classification 2020* Factor 2025 Factor 2030 factors to > 250% 150% 125% **Pioneers** X

110%

100%

90%

75%

120%

100%

80%

50%

of xEVs in Use **2030**

on country level

Breakdown of EV uptake on national level

Source: Arthur D. Little

consider

current state

of EV adoption

*Index based on xEV share of fleet and new car registrations (100% = EU average 2020)

Frontrunners

Average Developing

Beginning

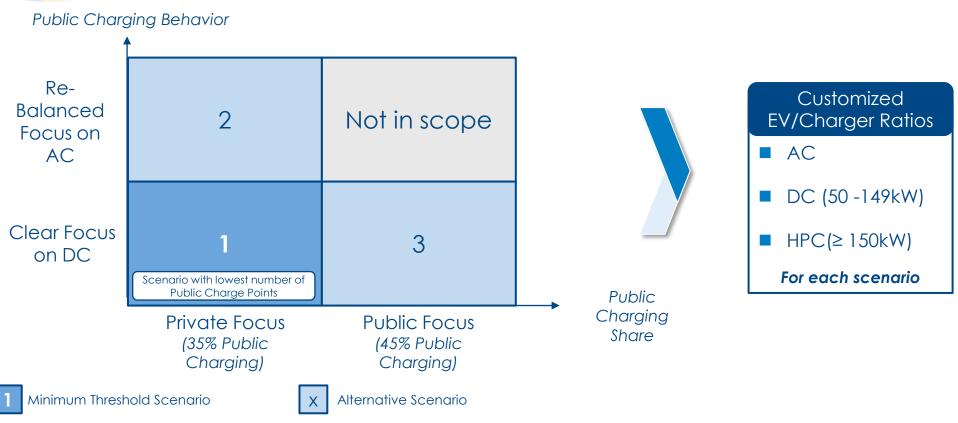
> 125% - 250%

>75% - 125%

>10% - 75%

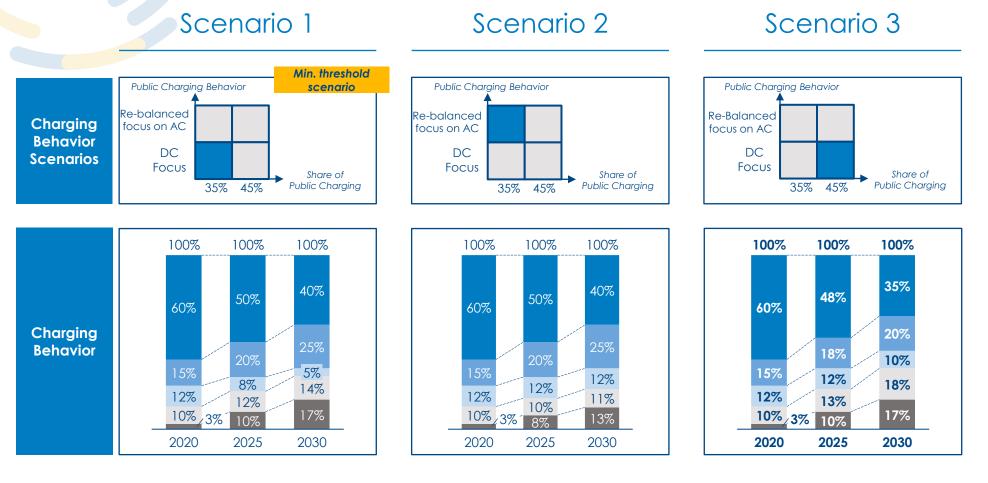
< 10%

Calculating minimal threshold Main Assumptions for minimum threshold


2

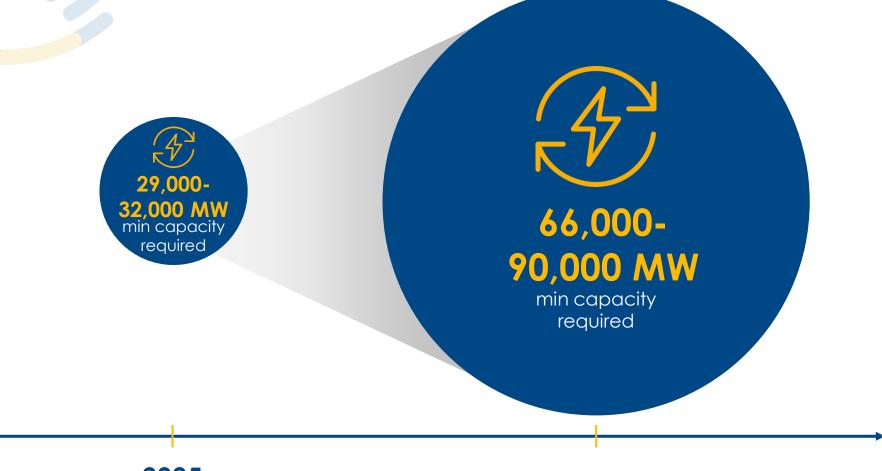
Alternative scenarios

Divergent approaches regarding public vs private and AC vs DC

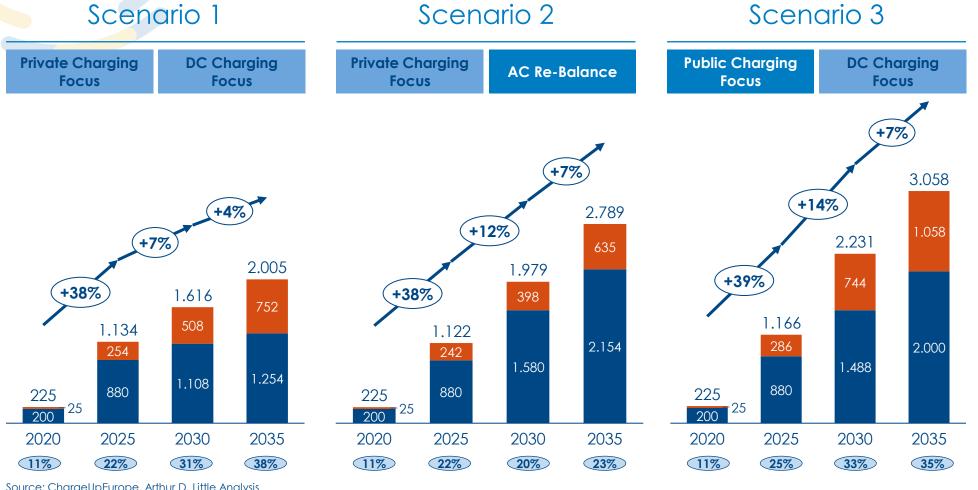

In addition to min. threshold scenario, we have analyzed two alternative scenarios based on share of public charging and AC-DC balance

Charging Behavior Scenarios

Source: Arthur D. Little


The alternative scenarios consider either a higher share of public AC charging or a higher share of public charging in general

Source: ChargeUpEurope, Arthur D. Little Analysis


Home Charging Workplace Charaina Public AC (Street, Destination) Public DC 50 - 149 (mostly Destination) Public HPC 150 - 350 (mostly En-Route)

Calculating overall European minimum capacity threshold range based on the alternative scenarios

Translating minimum capacity threshold into indicative AC-DC charging point splits for the three scenarios

AC

Source: ChargeUpEurope, Arthur D. Little Analysis

DC (including HPC)

